In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of :=GL2(q[])). Among several results that we prove here, we determine the complete structure of the modules of these forms, we describe their specializations at roots of unity and their connection with Drinfeld modular forms for congruence subgroups of and we prove that the modules generated by these forms are stable under the actions of Hecke operators.

Vectorial Drinfeld modular forms over Tate algebras / Pellarin, F.; Perkins, R. B.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - 14:6(2018), pp. 1729-1783. [10.1142/S1793042118501063]

Vectorial Drinfeld modular forms over Tate algebras

Pellarin F.;
2018

Abstract

In this paper, we develop the theory of vectorial modular forms with values in Tate algebras introduced by the first author, in a very special case (dimension two, for a very particular representation of :=GL2(q[])). Among several results that we prove here, we determine the complete structure of the modules of these forms, we describe their specializations at roots of unity and their connection with Drinfeld modular forms for congruence subgroups of and we prove that the modules generated by these forms are stable under the actions of Hecke operators.
2018
Anderson generating functions; Anderson-Thakur function; Drinfeld modular forms; Eisenstein series; function fields; L-series; tate algebras
01 Pubblicazione su rivista::01a Articolo in rivista
Vectorial Drinfeld modular forms over Tate algebras / Pellarin, F.; Perkins, R. B.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - 14:6(2018), pp. 1729-1783. [10.1142/S1793042118501063]
File allegati a questo prodotto
File Dimensione Formato  
Pellarin_Vectorial-drinfeld_2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 801.92 kB
Formato Adobe PDF
801.92 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1594667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact